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ABSTRACT 

Abiotic and biotic stresses are the causes of drastic changes in plants growth and development.  

These stresses effect crop production and quality, thus result is in economic lose and food 

insecurity. Many factors play vital role in regulating growth of plants along with developmental 

pathways during biotic and abiotic stresses. Transcription factors are proteins that control 

physiological, developmental and stress responses in plants. Ethylene response factors belong 

to the biggest family of transcription factors, known to participate in various stress tolerance 

like drought, heat, salt and cold. They are significant regulators of plant gene expression. The 

objective of this review is to present how ethylene response factor family proteins became the 

focus of stress tolerance as well as the development and growth of plants. 

 

INTRODUCTION  

Plants are susceptible to several types of environmental stresses throughout their life cycle. 

These adverse environmental conditions, specifically high salt concentration, temperature, soil 

moisture affect the growth, development, yield and geological distribution of cultivated crops 

across the world and decrease possible crop productivity approximately to 70% (1).  

Biotic stresses for example weeds, diseases and insects occur at variable extent which may not 

be relevant in a particular developmental stage but decrease plant productivity (2).One of the 

main objective of cop breeding program is development of stress tolerant crop (3). Several 
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widespread abiotic stresses reported to take place around the world are salinity (4), drought (5), 

water logging, extreme temperatures (6), also nutrient deficiency (7). 

A variety of defense mechanism like maintenance of membrane integrity, generation of 

antioxidants, hormone regulation, stimulation of stress proteins and carbon fixation rate have 

been found to work in plant. Various mechanisms in plant are governed involving particular 

genes for these stresses(8) and help plants to protect against a series of outside stresses during 

morphological adaptation (9). A large number of genes with diverse functions are induced or 

repressed when a plant is undergo to abiotic stresses. These genes encode for proteins which 

could be divided into two groups. One of them is  primary group comprises functional proteins 

that is key enzymes for osmolytes biosynthesis like proline and sugar alcohols, molecular 

chaperones, and membrane transporters which are directly related to defense of plants from 

abiotic stress. The other group contains proteins that are regulatory in nature and control signal 

transduction and stress receptive gene expression and consists of a variety of transcription 

factors and protein kinases (10). 

Transcription factors (TFs) that are regulatory proteins have a central part in initiating defense 

gene expression (11). They interact through cis-acting components present in promoter region 

of various stress regulated genes and consequently start cascades or entire system of genes that 

perform together increased tolerance to various stresses at a time. Stress responsive 

transcription factors are strong tools for genetic engineering because their overexpression can 

result in either upregulation or downregulation of entire collection of genes under their control. 

A large number of transcription factors participate in plant stress tolerance and regulate plant 

responses to diverse stresses. In Arabidopsis more than 1500 genes have reported to encode a 

various transcription factors (12). Some of the transcription factors related to plant stress 

response are categorized into numerous large families for example AP2/ERF, NAC, bZIP, zinc-

finger,MYB, MYC and WRKY (13). Ethylene responsive factor is the member of large gene 

family the APETALA2/Ethylene-Responsive Factor superfamily. This superfamily also 

include AP2as well as RAV family(12). This superfamily has characteristic AP2/ERF domain, 

which contains near about sixty to seventy amino acids. The families of AP2/ERF superfamily 

defined like, proteins of AP2 family have AP2/ERF domains which are two repeated domains, 

and proteins of ERF family consist of one domain that is AP2/ERF, whereas proteins of RAV 

family have a B3 domain. The ethylene response factor family is further divided into two 

distinctive subfamilies, one is CBF/DREB subfamily, second is ERF subfamily (14). The ERF 

region initially identified as conserved element in four proteins characterized in Nicotiana 
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tabacum. These proteins are distinctive ethylene responsive element binding proteins, named 

ERF 1, 2, 3, 4 also found to interact with consensus promoter sequence GCC box which play 

role in ethylene responsive transcription of genes (15). The ERF subfamily proteins were 

classified into six sets, B-1 to B-6. Nakano et al., (16) studied the expression of various genes 

of  ERF subfamily in various plants and their biological roles. 

The ethylene responsive factors also governed by feedback mechanism and may be ethylene 

dependent or ethylene independent. Apart from regulation mechanism, ERFs expressions are 

regulated post-transcriptionally via micro RNAs, while expressions of miRNA are also 

regulated through ERFs. Ethylene responsive factors have found to involve as activator or 

various genes while it may act as repressor of various genes during of plants defense response 

averse to biotic stress condition (17). Ethylene responsive factors also defense role in fungal 

and bacterial diseases responses as well as during viral infection in plants (18). SERF1 

overexpression enhanced tolerance of salinity through ROS stimulated MAPK indicating flow 

(19). TaERF1 in wheat was appeared in the direction of improve easiness to abiotic, also biotic 

stress conditions (20). AP2/EREBP family which are plant-specific TFs exposed by 

Arabidopsis mutational analysis, that were liable for enhance wax substance, decline stomatal 

density, changed cuticle premises in addition to the connected important raise in tolerance of 

drought Arabidopsis (21).  

Ethylene response factors (ERF) are associated in stress tolerance in a number of species of 

plants (22), it was revealed that GhERF2, GhERF3 and GhERF6 can proceed as significant 

frequent components of various signaling pathways receptive to abiotic and biotic stresses. To 

advance identify with their activity, the development of transgenic plants overexpressing these 

genes is ongoing (23). 

Discovery of Ethylene response Factor 

ERFs previously named ethylene response binding proteins denoted by ERE binding proteins. 

The ethylene responsive element proteins earliest extracted from plant Nicotiana tabacum (15). 

ERFs consist of a domain, AP2 DNA-binding region, as of a plant-definite fabulous family of 

122 TFs in Arabidopsis. In genome of tomato, near 85 gene of ethylene responsive factors 

family protein stay uncharacterized (24). It is described that in various plants ERF domains 

product be present within several regulatory genes (25, 26)but is not present in fungi, yeast or 

mammalian (27). In the most recent decade, to a large extent, consideration have been 

accentuated on AP2/ERF large family. The hypothesis elucidates as the lateral gene movement 
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of HNH-AP2 endonuclease originated from bacteria or virus into the host plant might bring 

about regenerate the AP2/ERF great family (28). 

Functional Diversity in Plants 

Up to now, Ethylene responsive TFs have been recognized as well as distinguished from 

numerous species of plants for example Arabidopsis (16), poplar (29), cotton (30), soybean 

(31), barley (32), maize (33), cucumber (34), apple, wheat (35), rice (36), sorghum (37), 

Medicago truncatula (38), also potato (39). Overall 147 genes in Arabidopsis, encoding 

AP2/ERF TFs, transcription factors named ERF encoded by 122 of these 147. ERF TFs of 

Arabidopsis may be divided into 12 groups different from each other, found on phylogenetic 

analysis, these groups named as I to X, VI-L,Xb-L (16).Functional diversity of ethylene 

response factor in different plants is given in table 1. 

Structure 

The ERF TFs take part in plants development procedures, in response to environmental stresses 

and hormone signaling (39). The ethylene response factor family has been comprehensively 

studied in recent times. In AP2/ERF domain b-sheet, 2 conserved amino acid residues 

distinguished ERF transcription factors, residues are 14th Ala as well as 19thAsp (14).ERF TFs 

allocate a conserved 58–59 amino acid domain (the ethylene response factor domain) and 

encompass sturdy capability to bind an extensive sort of CREs within promoter of mark genes. 

From the cis-regulatory elements, DRE/CRT and GCC-box are the two chief DNA-binding 

elements (40). Most stimulatingly, numerous studies expose ERF proteins interconnect by 

DRE/CRT motif, a cis-acting element which acts in response to osmotic stress or cold (41), 

they build up defense by interrelating among stress-regulated genes (42).  

The α-helix as well as β-sheet of ERF region identify the GCC box (called core cis-acting 

element AGCCGCC) of objective DNA on the ER promoter region (43). Pathogenesis-related 

(PR) genesare expressed by these GCC box elements (44). Additionally, the minority 

conservative elements of other than AP2 region grant transcriptional repression or activation 

in favor of particular gene, for example ERF connected amphiphilic oppression element that is 

EAR: DLNxxP (45), LWSY element(30)in addition to B3 oppression domain motif that is 

BRD:RLFGV (46). ERF protein either has homology resemblance with identified DNA joining 

proteins nor has fundamental zinc finger or leucine zipper elements, which propose ERF is a 
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set of novel DNA binding proteins (43).Figure 1 gives classification and highlights functional 

association among AP2/ERFs in a variety of abiotic stress responses plants. 

Role of ethylene response factor 

Ethylene responsive factors take part essential regulatory tasks in various developmental 

processes and stress responses in plants. Genes of ERF family in an extensive array of plant 

types, were categorized into 8groups and 14 subgroups on the base of gene structures, 

conserved motifs, phylogenetic relationships, and biological functions. ERF genes, particularly 

in groups II as well as VII, may be utilized like contenders to develop crop resistance, for the 

reason that overexpression of ERF genes increases various disease resistance along with 

tolerance to drought, salt, freezing also in transgenic plant. The inclusive testing of 

phylogenetic correlations, conserved pattern, moreover physiological functions is beneficial in 

lighlighting the biological roles of genes of ERF family in signal transduction, gene regulation 

along with defense response below stress environments (11). 

ERF TFs have been revealed to be concerned in the regulation of  expression of lipids, cell wall 

constituents, pathogenesis related genes, biosynthesis genes, basic type defense related genes, 

chitinase, osmotin, more over b-1,3-glucanase encoding genes (28). Few of them are exposed 

to be concerned with in the control of plant reactions to biotic, also abiotic pressures by either 

activating or repressing abscisic acid responsive genes (47). Such as AtERF4 over-expression 

plant was a smaller amount of responsive to ABA suppressed root enlargement that entails 

negative control of ABA also ethylene reactions (48). The expression of ABA-responsive genes 

are repressed by AtERF7 that binds to the GCC box (49). ERF111 or ABR1 takes part as a 

negative controller of ABA reactions throughout seed germination, ABA and stress regulated 

gene expression (50) wherever as in Arabidopsis ABA hypersensitivity is conferred by 

transgenic plant, overexpressing AtERF13 (51). AtERF15 exposed on the way to proceed as 

activist controller of ABA reactions (52). In contrast, ABA may also bring about the few ERF 

genes expression such as the expression of tomato ERF gene JERF1/3, cotton ERF gene 

GbERF in addition to tobacco ERF gene NtCEF1 has been revealed to be evoked by ABA 

(53).Sub group IX in IXERF subfamily accommodates 4 tiny ERFs through amino acids, varied 

as of 131-139. These tiny ethylene response factors named ERF95, ERF96, ERF97, ERF98. 

Additionally toward AP2/ERF area, these ethylene response factor have unfamiliar role pattern 

termed CMIX-1 (16). In the group of these, ERF95 in addition called ethylene and salt 

inducible1 (ESE1), furthermore ERF98 have been exposed to concerned with the control of 
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salt tolerance (54). In the past ERF97 termed AtERF14, has been revealed to control plants 

protection (55). In recent times ERF96 also has been revealed to regulate plant defense 

response (56). 

Role of ERF during Stress 

ERFs are concerned during the parameter of plant growth, expansion, metabolism as well as 

plant reactions to ecological stimulus like abiotic and biotic stresses (57). The ERF 

transcription factors are participated in the ethylene signaling pathway as well as directing in 

the direction of the expression of a variety of protection-associated genes, for example 

pathogenesis-related genes (40), abiotic stress receptive genes (58). The existence of a GCC-

box or a dehydration responsive element/C-repeat element (DRE/CRT, CCGAC) situated in 

the promoter sequences ofdefense-related genes are involved in characterization of these genes 

(14). Figure 2 shows stress related genes expression, their role under stresses 

 

Figure 1: AP2/ERF transcription factors in plants, their classification and their functions has also been reported. 

 

Table 1: Examples of ERF family proteins involved in regulation of multiple abiotic stress 

responses in different plants.        
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Role of ERF during Stress 

ERFs are concerned during the parameter of plant growth, expansion, metabolism as well as 

plant reactions to ecological stimulus like abiotic and biotic stresses (57). The ERF 

transcription factors are participated in the ethylene signaling pathway as well as directing in 

the direction of the expression of a variety of protection-associated genes, for example 

pathogenesis-related genes (40), abiotic stress receptive genes (58). The existence of a GCC-

box or a dehydration responsive element/C-repeat element (DRE/CRT, CCGAC) situated in 

the promoter sequences of defense-related genes are involved in characterization of these genes 

(14). Figure 2 shows stress related genes expression, their role under stresses. 

Abiotic Stress 

Environmental stresses that are nutrient deficiency, drought, salinity, extreme temperatures and 

chemical toxicity, leads to a chain of physiological, morphological, molecular, and biochemical 

changes which negatively have an effect on plant development, yield and survival all-inclusive 

(59); (60), in response to those stresses plants develop mechanisms. Plant feedbacks are 

multifarious, including extensive metabolic and transcriptional events (61). The molecular and 

physiological studies of environmental stresses have proposed a familiar network of several 

signaling tracks that mediate salt, extreme temperatures and drought stress responses in plants 

(62). In abiotic stress responses the DREBs proteins are most extremely considered ethylene 

response factor. Elements of the subfamily DREB1/CBFs are quickly induced in retort to chilly 

stress and get better tolerance to freezing when expressed ectopically, (63). Whereas, RNAi 

lines of Arabidopsis for CBF1 or CBF3 have decreased cold tolerance (64). For freezing 

tolerance CBF2 associated by quantitative trait locus (65), point out that DREB1/CBF genes 

are cold activated and in Arabidopsis are liable to be main monitor of reaction to wintry stress. 

Furthermore in Arabidopsis CBF2 abnormal gene communication has been revealed to retard 

leaf senescence, indicating that CBFs promotes extremely cold temperature tolerance (66). 
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Figure 2: A model of process of abiotic or biotic stress tolerance in plants. 

 

The subgroup of DREB2 contains eight elements in Arabidopsis and more homologs in the 

genetic material of numerous angiosperm families. Along with the components of the DREB2 

sub division, Arabidopsis DREB2A as well as DREB2B were induced in loss of water, heat 

and elevated saltiness in an ABA independent way (67). The abnormal gene expression of a 

constitutively dynamic structure of DREB2A demonstrates developed forbearance to famine, 

heat and elevated salt stresses (67, 68) whereas DREB2A are further susceptible to temperature 

Shock (67). From rice or Arabidopsis several ERF-VII genes are exposed to be participated 

with in response to hypoxia as well as submergence (69).In Arabidopsis RAP2.12 are 

constitutive ERF-VII factors, they are recommended to proceed as prime triggers for the 

molecular feedback to insufficiency of oxygen (70); (71), that is then comforted at the oxygen 

deprivation activated ethylene response factors HRE1 also HRE2 (72). In submerged deep 

water rice, SK1and SK2 motivate internodes elongation to effect clearance of the water level 

(73), whereas Sub1A promotes a quiescent strategy that allows carbohydrate saving and 

improves tolerance after flash-flood (74). A number of ERF genes from various plants have 

been exposed to confer various stress tolerance when expressed ectopically (75). This 

‘unspecific’ effect may be explained by the activation of tolerance pathways which reduce a 

common stress including oxidative bursts generated as results of the primary stresses. 

Otherwise constitutive ERF expression could set the plant in a common alert state that fasten 

or expand the response when a specific stress is applied (28). 
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Biotic Stress 

ERFs are entailed in biotic stress responses, ethylene response factor proteins initially extracted 

the same as transcription factors (TFs) which connect to promoter regions of stress-responsive 

genes. ERF genes assessed to date, are provoked through biotic stresses, consist of wounding, 

pathogen induced stresses, such as transcription of basic type pathogenesis-related (PR) genes, 

defense-related genes, chitinase, osmotin, and b-1,3-glucanase activated by numerous ERFs. 

On the other hand, the group of target genes regulated by each ERF has not been fully 

discovered. ERF1 as well as its homologs be associated to ERF-IX group, are possibly the ERF 

transcription factors whose participation in pathogen reaction in Arabidopsis has been most 

widely distinguished (76), as well a number of proteins of ERF regulate ethylene biosynthesis 

(77). Tobacco OPBP1 when expressed ectopically in transgenic rice increases resistance to 

pathogens (78).  

 

 

 

Figure 3: Hormonal signalling and expression of genes in biotic stresses. 

 

Conclusion 

The existing information about various roles ofAP2/ERFs recommends that the members of 

this large super family can be utilized for improving stress tolerance for better crop yields. The 

members of this family can be employed in improving nutritional quality of grown varieties. 
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Up to now extensive advancement has been done to know the functions ofAP2/ ERFs in 

response to various stresses. To develop multiple stress tolerant crops the members of this 

superfamily have been used. The plants genome sequencing projects have facilitated for 

recognition of ethylene response factors in different plants. It is stated that the proteins of ERF 

family has ability to confer resistance against numerous stresses in crop plant.  
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